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Abstract
Ladder operators and a triangular relation are used to derive the five-
dimensional surface harmonics with definite angular momentum, as used in
studies of the dynamics of a quadrupole shape in the nuclear collective model.
A new basis is used which leads to solutions in terms of associated Legendre
functions. The role of the Octahedral symmetry group and the limit of large
quantum numbers are discussed.

PACS numbers: 21.60.Ev, 03.65.Fd

1. Introduction

In three dimensions, the surface harmonics Ylm (θ , φ) provide a useful complete set of functions
of the polar angles θ , φ while the functions ψ = rl Ylm (θ , φ) and r−(l+1) Ylm (θ , φ) are solutions of
the Laplace equation ∇2ψ = 0. The operator ∇2 separates into a radial part r−2∂/∂r(r2∂/∂r)

and an angular part −�/r2 so that Ylm is an eigenfunction of � with eigenvalue l(l +1). Group
theoretically, the Ylm provide a basis for the irreducible representation Dl of the rotation group
O(3) and � is the Casimir operator.

A similar situation occurs in five dimensions and is of interest because many properties of
atomic nuclei can be understood as the motions, such as rotation and vibration, of a quadrupole
shape, which requires five variables to define it. A convenient choice of variables is obtained
by introducing the principal axes of the shape which require three Euler angles, denoted �,
to define their orientation relative to the laboratory frame, leaving two variables β and γ to
define the intrinsic shape. In detail, β and γ are conventionally defined by giving the radial
distance from the centre of the shape to its boundary as

R(θ, ϕ) = R0
[
1 + β cos γ Y20(θ, φ) +

√
1
2β sin γ {Y22(θ, ϕ) + Y2−2(θ, φ)}] (1)

where θ and φ refer to the principal axes. Thus β, running from zero to infinity, describes
the overall deformation from spherical at β = 0, and is analogous to the radius r in three
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dimensions while γ is the single shape variable and runs from zero to π/3. The use of larger
values of γ only reproduces the same range of shapes but with a different labelling of axes.

In five dimensions therefore we again have a single radial variable β with four angles, γ

and the three Euler angles �. The five-dimensional Laplacian again separates into a radial
part β−4∂/∂β(β4∂/∂β) and an angular part −�/β2 and it follows that a set of solutions of the
Laplace equation may be written as

βλYλα(γ,�) and β−(λ+3)Yλα(γ,�).

The Yλα are eigenfunctions of � with eigenvalues λ(λ + 3), and for each λ they form the basis
of an irreducible representation (λ, 0) of the group O(5) where � is the Casimir operator.
(We have used the same symbols � and Y in both the three- and five-dimensional cases,
to emphasize the analogy, but in the rest of the paper these symbols always refer to five
dimensions.) In three dimensions the familiar label m on the spherical harmonic is sufficient
to label all solutions with a given l and it denotes the representation of the subgroup O(2) of
O(3). In five dimensions there is a greater variety of subgroups of O(5) from which to choose
a labelling system for the basis of the O(5) representation. We have denoted these labels
symbolically by α. It is important to choose the physical O(3), relating to the quadrupole
shape described above, as a subgroup since this provides angular-momentum labels IM for the
motion of the shape. In general I and M are not sufficient to label all basis vectors of (λ, 0) so
we retain a label α in addition to IM.

It is well known that, in three dimensions, the surface harmonic Ylm is given explicitly
as an associated Legendre function Pl

m (cos θ ), together with a factor exp (imφ) and some
conventional phase and normalization. In five dimensions the explicit form of the YλαIM was
first given only for particular small I and λ by Bès [1] in 1959 and for I = 2 with any λ by Budnik
et al [2] but general formulae were given in two papers by Chacón et al [3] in about 1977. Here
we revisit the problem of constructing these solutions. Section 2 discusses symmetries and
describes the array of solutions as well as introducing several algebraic devices, which include
ladder operators and a triangular relation. Section 3 re-derives the earlier results [3] more
directly, using a recurrence relation. A completely new basis is used to derive the solutions
in section 4 with the coefficients being given in terms of a few Legendre functions. Section
5 considers the limit of large λ. Some B(E2) values are calculated in section 6 and compared
with the results at large λ The transition from even I to odd I is briefly described in section 7.
Appendices A and B contain proofs of some results quoted in the paper while C and D give
the complete set of solutions and norms for I � 8. The use of irreducible representations of
the Octahedral group rather than the rotation matrices DI

MK is discussed in section 4.4 and in
appendix E.

2. General properties of the solutions

2.1. Symmetries and the basis

To achieve states with definite angular momentum I and with projection M on the laboratory
z-axis we must use the rotation matrices DI

MK (�) of the Euler angles � but their use to define
the intrinsic frame implies that certain symmetries must be satisfied. The labelling xyz of the
axes is non-physical and hence [4] any wavefunctions must be invariant under the Octahedral
group which permutes the labels. These group operations affect both γ and the �. Although
γ is invariant under the subgroup D2 of π -rotations, we can only ensure D2 -invariance for the
�-dependence if the D-functions are used in the combinations

IMK = (
DI

MK + (−1)IDI
M−K

)/√
2(1 + δK,0) (2)
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with even K � 0. The general solution may then be written as

YλαIM =
∑
K

fIK(γ )IMK (3)

which is the form originally used by Bès. However, we know that the solutions must have
overall invariance with respect to the Octahedral group and the calculation of the coefficients
f is simplified by constructing, in place of the IMK, a basis which is invariant under the
Octahedral group. The coefficients are then functions only of the invariant cos 3γ . This
technique has been used in the more recent papers [3].

The basis is constructed from the building blocks 220 and 222. Clearly, any product of
n such factors has total M = 2n and, from the usual angular-momentum coupling rules, the
total angular momentum I cannot exceed 2n. Hence I = 2n. In other words, any product of
I/2 automatically has angular momentum I. The fact that it has a specific M = I is unimportant
since, if required, the M-dependence in (3) is contained in the known D-functions. This
argument clearly applies only to even I but the extension to odd I is straightforward and will
be discussed later, in section 7.

The functions 220 and 222 can be shown to belong to the representation E of the
Octahedral group. (The irreducible representations of the Octahedral group are labelled A1

(invariant), A2 (one-dimensional), E (two-dimensional) and T1, T2 (three-dimensional).) Thus,
to form an Octahedral invariant for I = 2, this pair must be combined with functions of γ

as coefficients, which also transform according to E, so that the sum becomes invariant. The
simplest invariant combinations, and those used in previous work, are

φ+ = cos γ220 + sin γ222 and φ0 = cos 2γ220 − sin 2γ222. (4)

They are orthogonal when the proper integration over γ is carried out. In later sections of this
paper we explore the use of an alternative to φ0.

2.2. The ladder operators

For the simplest case I = 0, there is no dependence on � and we only need the appropriate
function of x = cos 3γ . The Casimir operator � in this case reduces to −9∂/∂x(1 − x2)∂/∂x

which is a multiple of the Legendre operator. The eigenfunctions are therefore the Legendre
polynomials f = Pl(x) with eigenvalues 9l(l + 1) = 3l(3l + 3) corresponding to λ = 3l in the
previous notation with l = 0, 1, 2, etc. We now show how to construct ladder operators which
generate any Yλα starting from these I = 0 solutions. (To simplify the notation we henceforth
omit the label M = I.)

By definition, the harmonics ψ = βλYλα and ψ = β−(λ+3)Yλα satisfy the five-dimensional
Laplace equation ∇2 ψ = 0. From the elementary Cartesian form for ∇2, it is immediate that
the derivative operator ∂/∂αν commutes with ∇2 where aν is any of the Cartesian co-ordinates
in five dimensions defined in equation (7) below. Hence it follows, from the usual symmetry
argument that, in particular, ∂ψ/∂a−2 is also a harmonic.

But ∂/∂a−2 has dimension β−1 in the radial variable so that we must have

∂

∂a−2
βλYλα = βλ−1Yλ−1α′ and

∂

∂a−2
β−(λ+3)Yλα = β−(λ+4)Yλ+1α′ .

The powers of β may quickly be eliminated to give the dimensionless ladder operators Q±(λ)
defined by

Yλ−1α′ = Q−(λ)Yλα = {λ∂β/∂a−2 + β∂/∂a−2}Yλα (5)

Yλ+1α′ = Q+(λ)Yλα = {−(λ + 3)∂β/∂a−2 + β∂/∂a−2}Yλα. (6)
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These equations define the normalizations and labels α′ of the new harmonics on the left in
terms of the original Yλα on the right. Importantly, however, if we choose the original harmonic
to have angular momentum I with maximum projection M = I, it follows that the harmonics
on the left also have a definite angular momentum I + 2 with maximum projection I + 2.
Using an earlier argument, this is an immediate consequence of the property that the operator
∂/∂a−2 increases the angular-momentum projection M in the laboratory frame by two units.
Hence, equations (5) and (6) show that the operators on the right not only change λ by one
unit but also remain within the set of states with maximum M = I, increasing both M and I
by two units. It is therefore possible to start from the I = 0 solution discussed above, for a
particular l, and to generate a family of harmonics with increasing even I which all carry the
same additional label l. Thus l can be used for both the additional labels α and α′.

To make practical use of this idea for constructing the YλIl we must find the effect of the
Cartesian derivative ∂/∂a−2 when acting on the polar variables β, γ and the building blocks
(4). To this end, we now collect together some elementary results.

The five Cartesian co-ordinates, with laboratory frame components µ, are conventionally
written as

aµ = β(cos γ2µ0 + sin γ2µ2) (7)

so that, in particular, a2 = βφ+. Similarly, the second of the functions (4) is given by the tensor
product

(a × a)
(2)
2 = −

√
2
7β2φ0. (8)

The quadratic and cubic invariants are given by

β2 =
∑

υ

(−1)υaυa−υ (9)

β3 cos 3γ = −
√

35
2 (a × a × a)0

0 (10)

from which we deduce the derivatives

∂β/∂a−2 = φ+ (11)

β∂(cos 3γ )/∂a−2 = 3(φ0 − cos 3γφ+) (12)

β∂φ+/∂a−2 = −(φ+)
2 (13)

β∂φ0/∂a−2 = −2φ+φ0. (14)

2.3. The array of solutions

It is convenient to picture the solutions for all even I as an array in the two dimensions I
and λ as shown in figure 1. Starting from a solution with I = 0 and λ = 3l, at the bottom
of the figure, we may construct the family of solutions labelled l by first acting a number
n− times with the lowering operator (5) and then a number n+ times with the raising operator
(6). To reach a particular point λ, I in the figure these numbers are given by n+ + n− = I/2, and
n+ − n− = λ − 3l. This path is obviously not unique but other paths lead to the same solution.
To show this we use the ladder operators introduced in (5) and (6) which, from (11) and (12),
satisfy the relation

Q+(λ − 1)Q−(λ) = Q−(λ + 1)Q+(λ).
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Figure 1. The array of solutions for even I. Non-degenerate solutions with l = 0, 1, 2 and 3 are
denoted by black circles, triangles, squares and diamonds respectively. The white shapes denote
cases that are doubly degenerate due to the overlap of a band of solutions with the indicated l and
another having l + 2. Thus, for example, there are two solutions at I = λ = 6 with l = 1 and 3. The
band of solutions with maximum λ for a given l, namely I = 2(λ − 3l), is the ‘top-band’.

This shows the equivalence of the paths around the left- or right-hand sides of a small square
in figure 1, from which the more general conclusion follows. However, n− must not exceed l
since otherwise a solution belonging to a family with smaller l is produced, see appendix A.
There is no upper limit to n+. Some points on the grid may be reached in this way starting
from more than one value of l. In such cases, there is more than one independent solution
with the same I and λ and different l so that l serves as the multiplicity label to distinguish
them. Most of the points in the region shown in figure 1 have a unique l-value but those with
a multiplicity of two are shown as white shapes.

Figure 1 demonstrates that the complete set of solutions has a band structure labelled by
n−. With the O(5) Casimir operator in the Hamiltonian, the energy spectrum behaves like
λ(λ + 3) so that the energy increases along the horizontal axis of the figure. The n− = 0 bands
have I = 0, 2, 4, . . . , the n− = 1 bands have I = 2, 4, 6, . . . etc, which is the same set of even
values as in a rotational band with K = 2n−. For each value of n−, the label l runs from n−
to ∞.

Some simple rules for the allowed values of l and I follow from the definitions of n+ and
n− and their limits n+ � 0, 0 � n− � l, discussed above. For example, given λ, the integer l runs
from zero and must not exceed λ/2 while, for each λ and l, the range of angular momentum
is given by

2|λ − 3l| � I � 2(λ − l)

where I moves by steps of 4. For given λ and I, these inequalities imply that the multiplicity
label l is confined to the range

(λ − I/2)/3 � l � min{(λ − I/2), (λ + I/2)/3}.
However, we must add to this inequality the constraint that l must be even (odd) accordingly
as (λ − I/2) is even (odd) which also follows from the definition of n+ and n−. (Recall that this
discussion is restricted to even I but we discuss odd I in section 7.) Although each solution is
given uniquely by the set of labels λ, I, l, it is sometimes convenient to use the step-number
n− = (I/2 − λ +3l)/2, defined above, in place of λ.
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As first pointed out by Bès [1], it is also worth noting that each solution has a definite
‘parity’ corresponding to the operation γ→ γ − π . Then, φ+ has odd parity while φ0 is even.
Both ladder operators have odd parity which enables us to deduce from the figure that the
parity of each solution λ is given simply by (−1)λ. The parity argument also implies that the
coefficients g(x), to be introduced in (18), have definite parity (−1)l−b. This symmetry goes
beyond the Octahedral group symmetry of the coordinates, discussed in section 2.1 and is due
to the invariance of the ∇2 operator with respect to the operation γ→ γ− π .

2.4. A triangular relation

The two ladder operators (5) and (6) may simply be combined to provide a ‘triangular relation’
between solutions. This will be helpful in obtaining a general solution from some particular
cases, which are simpler. Subtracting (6) from (5) and using (11) gives

Yλ−1Il = Yλ+1Il + (2λ + 3)φ+YλI−2l . (15)

We call this a triangular relation because it relates three solutions at the corners of a small
triangle (with apex downward) in figure 1. In this expression, the values of λ are larger on the
right than on the left. Hence, by repeated application, any solution may be written as a sum
over solutions on the right-hand edge (which we call the ‘top band’ and corresponds to n− = 0)
of the rectangle in figure 1 defined by some fixed l. On this top band, the values of λ and I are
related by λ = 3l + I/2. After some algebraic reduction, we find

YλIl =
∑

k

(
(3l + I/2 − λ)/2

(I/2 − k)

)
(3l + I/2 + λ + 3)!!

(3l − I/2 + λ + 2k + 3)!!
φ

I/2−k
+ Y3l+k2kl (16)

which expresses a general solution as a sum over solutions on the top band. The first factor
on the right is a binomial coefficient and its upper argument is just n− defined in section 2.3.
The summation index k therefore runs over the n− + 1 values from I/2 − n− to I/2.

3. Recurrence relations and explicit solutions in the φ+, φ0 basis

We now use the ladder operator (6) to derive explicit formulae for the YλIl on the top band
by deriving a recurrence relation for the coefficients in the expansion in a complete set of
basis functions constructed from the building blocks in equation (4). For a given I we need a
product of I/2 of these blocks, and for convenience we introduce the symbol n = I/2, so that
the basis functions, distinguished by a label b, are denoted

(φ+)
n−b(φ0)

b (17)

with

YλIl =
l∑

b=0

gλIl
b (x)(φ+)

n−b(φ0)
b (18)

where x = cos 3γ . Equations (11) to (14) show that an increase in the number of factors φ0 in
(17) occurs only from the differentiation ∂/∂x. Hence, because the ladder process starts from
a polynomial Pl (x) of order l, the number b of such factors cannot exceed l. This justifies the
upper limit for the sum in (18) and the vector space (17) has dimension l + 1.

From equations (11) to (14) we see that

β∂/∂a−2(φ+)
n−b(φ0)

b = −(n + b)(φ+)
n−b+1(φ0)

b (19)

and

β∂g(x)/∂a−2 = −3(xφ+ − φ0)∂g(x)/∂x. (20)
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Then, combining equations (6) and (18), using equations (19) and (20) and equating coefficients
of a particular component (φ+)

n−b(φ0)
b leads to the recurrence relation

gλ+1I+2l
b = −(λ + 3 + n + b + 3x∂/∂x)gλIl

b + 3
∂

∂x
gλIl

b−1 (21)

for the coefficients in the expansion of Yλ+1 I+2l in terms of those of YλIl. As explained in
section 2.2, the solution for I = 0 is a Legendre polynomial Pl (x). For other YλIl we therefore
expand the coefficients in (18) as a power series

gλIl
b (x) =

[(l−b)/2]∑
α=0

cλIl
bαxl−b−2α. (22)

The restriction here to a polynomial of order l − b follows from the discussion given after
equation (18). The square bracket in the upper limit to the sum denotes the ‘integer part of’
(l − b)/2.

Substituting into equation (21) and equating coefficients of each power gives the
recurrence relation

cλ+1I+2l
bα = −(λ + 3 + 3l − 2b − 6α + n)cλIl

bα + 3(l + 1 − b − 2α)cλIl
b−1α. (23)

In the particular case of the top band, the variables λ and I are related by λ = 3l + I/2 and the
recurrence relation simplifies to

cλ+1l
bα = −(2λ + 3 − 2b − 6α)cλl

bα + 3(l + 1 − b − 2α)cλl
b−1α (24)

where we have dropped the redundant I-label.
An important feature of this relation is that it involves no coupling between one value of

α and another. For each α it may be applied repeatedly until λ has reduced back to its smallest
value of 3l at I = 0 where the solution is the Legendre polynomial with

c3ll
0α = (−1)α

(2l − 2α)!

2lα!(l − α)!(l − 2α)!
. (25)

For any solution on the top band, labelled by the number of steps k = λ − 3l from the starting
point I = 0, we find that (24) has the solution

c3l+kl
bα = (−1)α+b+k(2l − 2α)!3b(6l − 6α + 2k − 2b + 1)!!

2lα!(l − α)!(l − b − 2α)!(6l − 6α + 1)!!

(
k

b

)
. (26)

Finally, we insert this into the triangular relation (16) to obtain the completely general result

cλIl
bα =

[
(−1)α+b3b(2l − 2α)!(3l + n + λ + 3)!!

2lα!(l − α)!(l − b − 2α)!(6l − 6α + 1)!!

] ∑
k

(−1)k
(

k

b

) (
(3l + n − λ)/2

n − k

)

× (6l − 6α + 2k − 2b + 1)!!

(3l − n + λ + 2k + 3)!!
. (27)

The form of the sum in equation (27) differs from that given earlier by Chacón et al [3] but
can be shown to be equivalent. These authors use µ for the additional label, rather than the
l in this paper, but, if we use the formula µ = (λ − l − n)/2 = l − n− to relate these labels,
our expression (27) for the coefficients in (22) can be shown to agree with [3] apart from an
unimportant extra factor

(−1)(λ−3l+n)/2(2λ + 1)!!/(λ + 3l − n + 1)!!

which amounts only to a different choice of normalization for the solutions. Our normalization
is defined by the original Legendre polynomial at I = 0 and the ladder operators Q+, Q−. (We
note that Frank and Van Isacker [5] use the symbol n� for µ.) Solutions with some fixed µ
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may therefore come from families of different l. Within a family of given l, the label µ runs
over the interval 0 � µ � l, as shown in figure 1. Solutions with µ = l are on the top band
while at the other extreme µ = 0, the solutions lie on the parallel line starting from I = λ =
2l which defines the left-hand limit of the l-rectangle. It is interesting that the sum in (27) is
proportional to a hypergeometric function of type 3F2 with argument unity. This is also true
of the sum in [3] and the two sums are related through one of the various symmetries of these
hypergeometric functions.

4. An alternative basis, φ+, φ−

Although the solution for I = 0 is a single Legendre polynomial, it was generally necessary,
in the previous section, to revert to a power series in cos 3γ , with formula (27) for the
coefficients. In this section we show how the use of an alternative basis to (4) leads to general
solutions in which the coefficients are expressed in terms of Legendre functions. For small I,
very few coefficients are needed, providing a natural extension to the simple result for I = 0.
Furthermore, we make use of ‘angular-momentum’ operators relating to the parameter l, which
labels each family of solutions, and all the Legendre functions within that family carry the
same l.

4.1. Recurrence relations and explicit solutions

As a basis we use φ+ from (4) but, instead of φ0, we take for the second member,

φ− = e−iψ(sin γ220 − cos γ222) (28)

which is related to the earlier pair (4) by sin 3γ φ− = e−iψ(φ0 − cos 3γφ+). Unlike φ+ and φ0

this new second member is not invariant under the Octahedral group but transforms according
to the representation A2. To restore the required Octahedral invariance it must always be
multiplied by an odd power of sin 3γ but that will occur naturally in the coefficients to be
determined. In fact these powers of sin 3γ are an essential part of the associated Legendre
functions. We also note that φ− is odd with respect to the Bès parity discussed at the end of
section 2.3.

The role of the new variable ψ in (28) is a minor one which will become clear later.
We need only to derive solutions for the top band since the triangular relation (16), being
independent of basis, may again be used to generalize the results. For any solution on the top
band we therefore expand, with the abbreviation n = I/2 again,

Y3l+nI l =
∑

b

f nl
b (x, ψ)φn−b

+ φb
−. (29)

Since Y is to be independent of ψ , the function fbnl must depend on ψ through the simple
factor eibψ. The task now is to use the ladder operators to obtain a recurrence relation for the
fbnl, as functions of x = cos 3γ , and to solve it.

Equations (12) and (14) must first be written in terms of the new basis vector φ−

β∂(cos 3γ )/∂a−2 = 3eiψ sin 3γφ− (30)

β∂φ−/∂a−2 = −5φ+φ− − e−iψ cot 3γ
(
φ2

+ − 3e2iψφ2
−
)

(31)

to give

β∂
{
f nl

b φn−b
+ φb

−
}/

∂a−2 = −(n + 4b)f nl
b φn−b+1

+ φb
− + 3eiψ(sin 3γ ∂/∂ cos 3γ

+ b cot 3γ )f nl
b φn−b

+ φb+1
− − b e−iψ cot 3γ f nl

b φn−b+2
+ φb−1

− . (32)
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We now introduce, in a mathematical sense, the ‘angular-momentum’ operators, with 3γ and
ψ as polar angles, which act only on the functions f and not on the basis vectors, defining in
the usual way

L± = ∓e±iψ(sin 3γ ∂/∂ cos 3γ ∓ i cot 3γ ∂/∂ψ), L0 = −i∂/∂ψ (33)

and noting that, from the definition of f nl
b ,

L0f
nl
b = −i∂f nl

b

/
∂ψ = bf nl

b . (34)

Inserting this notation into (32) and using definition (6) of the ladder operator gives

Q+
{
f nl

b φn−b
+ φb

−
} = −(3l + 2n + 3 + 4L0)f

nl
b φn−b+1

+ φb
− − 3L+f

nl
b φn−b

+ φb+1
−

+ 1
2 (e−2iψL+ + L−)f nl

b φn−b+2
+ φb−1

− . (35)

In this expression, f is a function of the two polar angles 3γ and ψ while all other dependence
on the variable x = cos 3γ is contained entirely in the angular-momentum operators. The
dependence of f on ψ is trivial, namely that, see (34), fb has ‘magnetic quantum number’
b. In using this equation we may therefore make use of the familiar algebra of angular
momentum. Although spherical harmonics are commonly used in this algebra we prefer to
use the un-normalized harmonics

Zm
l = eimψP m

l . (36)

The angular-momentum step operators are then simply

L+Z
m
l = −Zm+1

l , L−Zm
l = −(l + m)(l − m + 1)Zm−1

l . (37)

Since, in (35), the ladder operator is expressed in terms of the L-operators and the ladder
process starts from Y3l 0l = f 0l

0 = Z0
l = Pl it is strongly suggested that fbnl will be given

simply in terms of the Legendre functions, noting (37). This is illustrated by some results
obtained directly for one, two and three ladder steps (35) along the top band, starting from
I = 0, and corresponding to I = 2 with λ = 3l + 1, I = 4 with λ = 3l + 2 and I = 6 with λ =
3l + 3 respectively,

Y3l+1 2l = −3(l + 1)Plϕ+ + 3eiψP 1
l φ−

Y3l+2 4l = {
15
2 (l + 1)(l + 2)Pl − 3

2P 2
l

}
φ2

+ − 18(l + 2) eiψP 1
l φ+φ− + 9e2iψP 2

l φ2
−

Y3l+3 6l = [− 3
2 (l + 1)(l + 2){9(l + 3) + 8}Pl + 3

2 {9(l + 3) − 8}P 2
l

]
φ3

+

+ 27
4 {11(l + 2)(l + 3)P 1

l − P 3
l } eiψφ2

+φ− −
− 81(l + 3) e2iψP 2

l φ+φ
2
− + 27P 3

l e3iψφ3
−. (38)

Note that, although the new variable appears in these expressions, it is always accompanied
by the appropriate power of φ− to make Y independent of ψ overall.

Although it is straightforward to continue the ladder operations in this way to any I, it is
clearly desirable to find a general solution. This is done by first acting with the ladder operator
on (29), using (35) and equating coefficients of each basis vector to give the recurrence relation
for the functions f as

f n+1l
b = −(3l + 2n + 3 + 4L0)f

nl
b − 3L+f

nl
b−1 + 1

2 (e−2iψL+ + L−)f nl
b+1. (39)

Examples (38) suggest using a Legendre expansion for f in the general case and we write

f nl
b =

[ 1
2 (n−b)]∑
r=0

3n

(
− 1

12

)r (
b + r

b

)
ρ(b, r)Al(n, b, r) e−2irψZb+2r

l (40)

where the exponential factor ensures that f has the correct dependence on ψ and the factor
preceding the coefficient A is chosen, with hindsight, to make A simpler, as we shall see.
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To avoid ambiguity, we have defined ρ(b, r) = (b + 2r)/(b + r) with ρ(0, 0) = 1. Inserting
(40) into (39) and equating to zero the coefficient of each spherical harmonic Zl

b+2r leads to
the recurrence relation

3(b + 2r)Al(n + 1, b, r) = −(3l + 2n + 3 + 4b)(b + 2r)Al(n, b, r) + 3bAl(n, b − 1, r)

+ 6rAl(n, b + 1, r − 1) − 1
2 (b + r)(l + b + 2r + 1)(l − b − 2r)Al(n, b + 1, r)

+ 1
4b(l + b + 2r + 1)(l − b − 2r)Al(n, b − 1, r + 1) (41)

for the coefficients A. Inspection of this equation shows there to be a solution in the form of a
polynomial of order (n − b − 2r) in l but, rather than using a power series, we use the factorial
series

Al(n, b, r) =
n−b−2r∑

i=0

(l + n − i)!

(l + b + 2r)!
Bi(n, b, r). (42)

This expansion is next substituted into (41) and the factors in (41) involving l may be absorbed
into the series by writing, for example, (l − b − 2r) = (l + n − i + 1) − (b + 2r + n − i + 1).
Equating the coefficients of each factorial (l + n − i)! on both sides of the equation gives the
following equation for the Bi which are independent of l

(b + 2r)Bi+1(n + 1, b, r) = −(b + 2r)Bi+1(n, b, r) − 1
3 (b + 2r)(3i + 4b − n)Bi(n, b, r)

+ b{Bi+1(n, b − 1, r) − (n − b − 2r − i + 1)Bi(n, b − 1, r)}
+ 2r{Bi+1(n, b + 1, r − 1) − (n − b − 2r − i + 1)Bi(n, b − 1, r)}
− 1

6 (b + r){Bi+1(n, b + 1, r) − (n + b + 2r − i + 1)Bi(n, b + 1, r)}
+ 1

12b{Bi+1(n, b − 1, r + 1) − (n + b + 2r − i + 1)Bi(n, b − 1, r + 1)}. (43)

Having extracted the dependence on cos 3γ in expansion (40) and the dependence on l in
equation (42) it remains to solve (43) for the numerical coefficients Bi. Although this is a
formidable recurrence equation it is not difficult to solve for small values of i = 0, 1, 2 and
from these cases we guessed the general solution

Bi(n, b, r) = (−1)n+b

(
−8

9

)i
n!

i!

×
∑

t

(
− 1

12

)t
(t + r)!

(n − b − i − 2r − 2t)!(b + 2r + t)!(t + r − i)!t!
. (44)

In practice, the number of allowed values of i is severely restricted by the constraint
i � [(n − b)/3] which results from the factorials in (44). The veracity of this solution
was then confirmed by substitution into (43), see appendix B, and although it refers only to the
top-band, the general solution may then be constructed by using the triangular relation (16)
together with equations (29), (36) and (40) to give

YλIl =
n∑

b=0

[(n−b)/2]∑
r=0

aλl(n, b, r)P b+2r
l (x)φn−b

+ (eiψφ−)b (45)

where

aλl(n, b, r) = 3n

(
− 1

12

)r (
b + r

b

)
ρ(b, r)

n−∑
w=0

(
n−
w

)
3−w

× (6l + 2n − 2n− + 3)!!

(6l + 2n − 2n− + 3 − 2w)!!
Al(n − w, b, r) (46)

and where n− = (3l + n − λ)/2 was introduced in section 2.3.
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4.2. The reflection symmetry l → −(l + 1)

Within each family l there is an interesting ‘reflection’ symmetry corresponding to a change
of sign of the quantity (l + 1/2) or, in other words the operation l → −(l + 1). This reflection,
which has its origin in the Legendre functions, has been discussed for the group O(3) in
the context of negative angular momentum, by Biedenharn and Louck [6] and others. In the
present context, we find that the solutions Y3l+kIl and Y3l−kIl are related by carrying out this
operation on the coefficients A(n, b, r) in expansion (40). In particular, the solutions Y3lIl

depend only on the invariant l(l + 1). For example, in comparison with (38)

Y3l−1 2l = 3lPlφ+ + 3eiψP 1
l φ−

while

Y3l 4l = {− 21
2 l(l + 1)Pl − 3

2P 2
l

}
φ2

+ − 21P 1
l eiψφ+φ− + 9P 2

l e2iψφ2
−. (47)

The origin of this symmetry lies in the ladder operators (5) (6) in which the step-up and
step-down operators differ only in the operation λ → − (λ + 3). In other words,

Q+(3l − k) = Q−(−3l − 3 + k) (48)

which contains the reflection described above and the change of sign for k. The general
result then follows from this symmetry in each step as the two solutions Y3l+kIl and Y3l−kIl

are constructed from I = 0. Although the second term in (5) and (6) gives rise to some
l-dependence when acting on the Legendre functions, the contribution is invariant under the
reflection, see (37). This symmetry applies to all solutions for I � 2l but for greater 2l � I �
4l it is relevant only for λ � 5l − I/2. For values of λ beyond this range the reflected image
with smaller λ falls outside the rectangle defining l and no such solution exists. This reflection
symmetry is not apparent when using the basis φ+, φ0 in section 3.

4.3. The calculation of matrix elements and norms

The calculation of matrix elements of physical operators, including norms, in the
wavefunctions YλIl involves integration over both γ and the three Euler angles � and this
problem has been discussed in some detail in earlier papers [3] and in the book of Eisenberg
and Greiner [7], using the basis φ+, φ0. We now indicate how the problem simplifies in the
new basis φ+, φ− because of the separation of the γ and � variables.

The general solution (45) is given by

YλIl =
n∑

b=0

[(n−b)/2]∑
r=0

aλl(n, b, r)P b+2r
l (x)|b〉 (49)

where |b〉 denotes the basis element φn−b
+ (eiψφ−)b and the coefficient aλl (n, b, r) was given in

equation (46). (Note that the angle ψ is completely absent in this form.) The �-dependence
lies only in the basis element whereas γ is present both in the Legendre functions and in the
basis. A succession of three simple transformations reduces |b〉 to a sum over the rotation
matrices DI

IK(�), enabling the �-integration to be done and, at the same time, separates out
the dependence on γ . We first introduce

 = (220 + i222)/
√

2 and ̄ = (220 − i222)/
√

2 (50)

so that

φ+ = (e−iγ  + eiγ ̄)/
√

2, eiψφ− = i(e−iγ  − eiγ ̄)/
√

2 (51)
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and, by expanding the two binomials, we have

|b〉 = 2−n/2ib
n∑

y=0

G(n, b, y)n−ȳy eiγ (2y−n) (52)

where G(n, b, y) = ∑
r (−1)b−r

(
b
r

)(
n−b

n−y−r

)
is proportional to a Jacobi polynomial at zero

argument and also to a reduced rotation matrix dn/2(π/2), see Biedenharn [6].
This separates out the γ -dependence into a single exponential and, with a similar

expansion of binomials, the �-dependent factor becomes

n−ȳy = 2−n/2
∑

z

izG(n, y, z)n−z
220 z

222. (53)

The products in (53) may then be reduced, using properties of the rotation matrices, to the sum

n−z
220 z

222 =
∑
K�0

2(n−2z+1)/23(n−z)/2

√
(2n + K)!(2n − K)!

(4n)!(1 + δK,0)

z!(
1
2z + 1

4K
)
!
(

1
2z − 1

4K
)
!
IIK

(54)

where the IIK were defined in equation (2). The sum over K is naturally restricted to K =
0, 4, 8, . . . for even z and to K = 2, 6, 10, . . . for odd z. The �-dependence is now entirely
contained in the IIK which are orthogonal on K with standard norm 8π2/(2I + 1) so that
the integral over � is simply carried out, depending on the �-dependence of the operator
whose matrix element is being calculated. The γ -integrals contain a product of Legendre
functions from (49) together with the exponential from (52) and any other factor from the
operator. Because of the Octahedral symmetry of the coordinates, discussed in section 2.1,
the contributions from some relative values (y′ − y) of y between bra and ket are zero. For
example in calculating the norm, this difference must be a multiple of 3 because the integrand
has to be an invariant, which implies being a function only of the multiple 3γ . Hence the
γ -integrals in the norm are of the sort∫ π/3

0
P m

l (x)P m′
l′ (x) e6ipγ sin 3γ dγ (55)

where p is an integer and these can be expressed in terms of the integrals∫ 1

−1
P m

l P m′
l′ (1 − x2)a dx = (−1)(l−l′−m+m′)/222a+l−l′+1 (l′ + m′)!

(l − m)!
[

l′+m′
2

]
!
[

l′−m′
2

]
!

×
∑
r=0

(
−1

2

)r

r!(2l − 2r − 1)!!

([
l−m

2

]
r

) ([
l+m

2

]
r

)

×
(
a +

[
l+m′

2

] − r
)
!
(
a +

[
l−m′

2

] − r
)
!

(2a + l − l′ − 2r)!!(2a + l + l′ + 1 − 2r)!!
. (56)

Expression (56) is valid if a � 0 and 2a + l − l′ is a positive even integer. It was obtained
by using various properties of the Legendre functions and is non-zero only for even values of
(l + l′ + m + m′). The square brackets again denote the integer part and are necessary to distin-
guish between even and odd values of, for example, (l + m). Without loss of generality, we take
m � m′ whereupon the range of the summation index r is restricted to r � a + (l − l′)/2. For
example when a = 0 and l = l′ there is only one term r = 0 and the integral is simply

(−1)(m−m′)/2 2(l + m′)!
(2l + 1)(l − m)!

. (57)
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In practice, for calculating norms and overlaps when I < 12, the only values of p which occur
are p = 0 or p = 1 and, as l and l′ differ by 2 at most, the maximum value of r in (56) is 2.
We give the norms and overlaps for I � 8 in appendix C. Although they were calculated using
solution (46) these norms and overlaps are also valid for solution (27) in the basis φ+, φ0 used
in section 3. This follows because the same ladder procedure (5), (6) was used to define the
solutions in each case.

4.4. The Octahedral group structure of the solutions

In section 2.1 we explained that the solutions must be invariant under the Octahedral group
and this is apparent from equation (49) in which both the Legendre function and the basis
vector |b〉 transform according to the invariant representation A1 if b is even and according
to the other one-dimensional representation A2 if b is odd. However, the symmetry of the
separate γ and � components of |b〉 is lost in the reduction to the convenient basis IIK through
equations (52), (53) and (54). In this section we show how to write the general solution in
terms of separate γ and � factors which transform irreducibly.

The first step is to rewrite (52) as

|b(even)〉 = 2−n/2(−1)b/2
[n/2]∑
y=0

G(n, b, y){cos(n − 2y)γ |y+) + sin(n − 2y)γ |y−)}

|b(odd)〉 = 2−n/2(−1)(b−1)/2
[n/2]∑
y=0

G(n, b, y){sin(n − 2y)γ |y+) − cos(n − 2y)γ |y−)}
(58)

where we have used the relation G(n, b, n − y) = (−1)bG(n, b, y), thereby halving the range
of the y-sum, and the round-bracket kets denote the combinations

|y+) = (n−ȳy + ȳn−y)/(1 + δn,2y), |y−) = (n−ȳy − ȳn−y)/i. (59)

The next step is to argue that |y+) and |y−) transform according to A1 and A2 respectively if
(n − 2y) is a multiple of 3 and if not, that they transform according to the two components
of the representation E. To show this we recall that the Octahedral group is generated by the
two rotations �z(π/2) and �y(π/2), see [4]. For the one-dimensional representations both
operators have a matrix element of +1 for A1 and –1 for A2. The representation E is typified
by the functions 220 and 222 giving matrices

�z(π/2) =
(

1 0
0 −1

)
, �y(π/2) =

(
−1

√
3√

3 1

)/
2 (60a)

so that, in the basis ,̄ of (50), the matrices become

�z(π/2) =
(

0 1
1 0

)
, �y(π/2) =

(
0 e−2π i/3

e2π i/3 0

)
(60b)

which gives

�z(π/2)|y±) = ±|y±)

�y(π/2)|y±) = ±{cos 2π(n − 2y)/3|y±) ± sin 2π(n − 2y)/3|y∓)}. (61)

If (n − 2y) = 3p + 1 with p any integer, this shows that |y+) and |y−) transform precisely
according to the representation E in the basis (60a). When (n − 2y) = 3p − 1 the same is
true for |y+) and −|y−) and for the case (n − 2y) = 3p, equation (61) shows that |y+) and |y−)
transform like A1 and A2 respectively.
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The geometry of the coordinates in five dimensions implies that the two generators in
(60) lead to the transformations γ → −γ and γ→ −γ + 2π/3 respectively. It follows that
the functions cos γ (2n − y) and sin γ (2n − y) transform in exactly the way that we have just
described for |y+) and |y−). The combinations of these trigonometric functions with the |y+)
and |y−) in (58) are then necessarily those which produce overall A1 symmetry for even b and A2

symmetry for odd b. (The coefficients in the combinations are essentially the Clebsch–Gordan
coefficients for the Octahedral group, which are just ±1/

√
2 in these cases.)

We therefore have the result that (49) with (58) gives an expansion of YλIl in a basis |y±)
of functions of � which transform irreducibly under the Octahedral group, in place of the
DIK

I (�) in (54). These functions are not normalized and, when a particular representation
occurs more than once for a given I, as it does for I � 8, they are not orthogonal. There is, of
course, orthogonality between different representations and between the two components of
the E-representation. We illustrate this form of solution in appendix E.

4.5. The introduction of ‘spin’ and its vector coupling to l to form j

In section 4.1 we introduced operators L to help in constructing the coefficients in an expansion
of the solution in a basis formed of a product of I/2 factors of the building blocks φ+ and
φ−. Here we regard these two functions as defining a spin-space with s = 1/2 so that
the basis for an arbitrary I with dimension I/2 + 1, as used in section 4.1, will have spin
s = n/2 = I/4. In principle, we may vector couple l and s in the usual way to form a
resultant 	j = 	l + 	s. If we choose a projection 〈jz〉 = s then the range of j-values is given by
min{|l − s|, s} � j � (l + s). If j is now connected to λ by the relation λ = 2j + l this range of
j-values translates into the range max{3l − 2s, l + 2s} � λ � 3l + 2s for λ. Comparison with
figure 1 shows that this region is precisely the rectangle defining the family l. The upper limit
is the top band and the two lower limits correspond to the band-heads and the other side of the
rectangle, which is parallel to the top band. There is therefore a one-to-one correspondence
between the range of solutions for given l and the usual range of j-values, given l, s and the
projection 〈jz〉 = s.

The important question remains as to whether the vector-coupled wavefunctions have any
connection to the detailed solutions constructed in section 4.1. For I = 0 there is nothing to
be said because s = 0 and l = j only. For I = 2, s = 1/2 so that j = l ± 1/2 corresponding to
λ = 3l ±1. We now show that the solutions derived earlier in these cases agree precisely with
the corresponding vector-coupled wavefunctions.

In this case, the ladder operator Q+ takes the simple form

Q+(3l)Pl = −(3l + 3)Plφ+ − 3L+Plφ− = −3{(l + 1) + L+S−}Plφ+

= −3{(l + 1) + 2(L.S)}Plφ+ (62)

where we have used S−φ+ = φ−, and S+φ+ = 0. The product Pl φ+ can only be a mixture
of j = l ± 1/2 but the operator on the right of (62) is the destruction operator for j = l −
1/2 because, trivially, the value of 2(L.S) is given by j (j + 1) − l(l + 1) − s(s + 1). Hence
the ladder operator on the left of (62) must produce a state of pure j = l + 1/2. By a similar
argument, Q− produces j = l − 1/2. It may easily be confirmed that the coefficients for these
two solutions, given in (38) and (47), agree with the conventional Clebsch–Gordan coefficients
if the standard normalization is applied to the spherical harmonics Z in (36).

For I > 2 the third term on the right-hand side of (35) contributes to the ladder operators
and, although it is still possible to use the label j = (λ − l)/2 there are increasingly complicated
correction factors multiplying the Clebsch–Gordan coefficients and we have not pursued this
avenue.
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5. The limit of large λ and finite I � λ

In this section we consider large l, so that λ is also large while I remains finite and small
compared with λ. For large l there is an asymptotic formula for the spherical harmonics, see
[8], which is remarkably accurate and implies, for the Legendre functions, used in (36),

P m
l (cos 3γ ) ≈ (−1)m

√
2

π sin 3γ

(
l +

1

2

)m− 1
2

sin

{(
l +

1

2

)
3γ +

(
m +

1

2

)
π

2

}
. (63)

It is possible to extend the arguments of the previous section to large λ and make use of (63)
to arrive, eventually, at some very simple results. We find that the solutions fall into three
categories, depending on whether λ is divisible by 3, i.e. λ = 3l, or λ = 3l ± 1. (This is the
extension of the even–odd concept to the number 3.) For λ = 3l, there are generally two kinds
of solution

Y =
√

6

π sin 3γ
cos

{
γ

(
λ +

3

2

)
− π

4

}
|A1〉 (64)

Y =
√

6

π sin 3γ
sin

{
γ

(
λ +

3

2

)
− π

4

}
|A2〉 (65)

and for λ = 3l ± 1,

Y =
√

3

π sin 3γ

[
cos

{
γ

(
λ +

3

2

)
− π

4

}
|E1〉 ± sin

{
γ

(
λ +

3

2

)
− π

4

}
|E2〉

]
. (66)

The kets are the orthonormal Octahedral representations A1, A2 and E, see appendix E, which
occur for each chosen I, usually given as a sum over the DI

IK(�) and where E1 and E2 denote
the two components of the representation E in the real basis transforming like 220 and 222.
The reduction of the (2I + 1)-dimensional representation of the rotation group into Octahedral
representations is described in appendix E. The volume element for the Euler angles is the
usual d� = sin θ dθ dφ dψ and, for the γ -variable we use sin 3γ dγ over the range 0 to π/3.

It is instructive to consider examples for small I making use of table 5. For I = 0, there
is just one solution, which must be given by equation (64), with λ a multiple of 3. For
I = 2, table 5 shows just the representation E so that equation (66) applies with λ = 3l ± 1.
For given λ there is only one solution because no λ can fall into both ± categories for integer
l. The Octahedral representation E is, in this case, just the original basis 220, 222 introduced
in section 2.1. For I = 4, table 5 shows that there is an A1 solution when λ = 3l and E solutions
when λ = 3l ±1. At I = 6, table 5 shows that there are both A1 and A2 type solutions when λ

is a multiple of 3, together with an E representation when λ has the form 3l ±1. When I > 6,
some of the representations A1, A2 and E occur more than once in the reductions in table 5 and
an arbitrary orthogonal basis will need to be constructed, as illustrated in table 6 for I = 8.

When l is finite, the general solutions (49) with (58) may always be expressed as a
sum over different representations but for large l, only one is involved. In other words the
coefficients of all representations but one go to zero for large l.

To understand the extreme simplicity of solutions (64) to (66) at large λ we return to the
Casimir operator introduced in section 2.2 and its eigenvalue equation

�YλIl =
[
− 1

sin 3γ

∂

∂γ

(
sin 3γ

∂

∂γ

)
+ Trot

]
YλIl = λ(λ + 3)YλIl (67)
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where Trot is the usual rotational energy, involving derivatives with respect to the Euler angles.
By writting YλIl = ZλIl/

√
sin 3γ the corresponding equation for Z becomes

∂2

∂γ 2
Z +

[(
λ +

3

2

)2

+
9

4 sin2 3γ
− Trot

]
Z = 0 (68)

from which we see that, for large λ, the γ -dependence of Z must be some combination of
cos

(
λ + 3

2

)
γ and sin

(
λ + 3

2

)
γ , in agreement with the results in equations (64) to (66). The

particular combinations in these equations can then be understood in terms of the overall
Octahedral and Bès symmetries discussed in section 2.

6. E2 transitions

The simplest E2 operator in the five-dimensional problem is proportional to aµ in the notation
of equation (7) but we omit the ‘radial’ factor β since, in this paper, we are only concerned
with the O(5) variables. For a transition I → I − 2 it is only necessary to use the µ = 2
component with the wavefunctions YλIl in this paper, which have M = I. In other words, the
E2 operator is the φ+ introduced in (4). This enables us to make use of the triangular relation
(15) to relate the E2 matrix elements to the norms of the wavefunctions, as follows.

For brevity, write YλIl ≡ |λIl〉. Then, from (15) we have immediately

〈λ ± 1Il′|φ+|λI − 2l〉 = ∓
(

1

2λ + 3

)
〈λ ± 1Il|λ ± 1Il〉. (69)

Dividing by the norms of the two wavefunctions on the left gives

B(E2 : λ ± 1 Il′ → λI − 2l) =
(

1

2λ + 3

)2 〈λ ± 1Il′|λ ± 1Il〉2

〈λ ± 1Il′|λ ± 1Il′〉 〈λI − 2l | λI − 2l〉 (70)

and values can be read off from the norms and overlaps in tables 3 and 4 of appendix D. For
the I → I transitions a direct calculation gives B(E2: λ = 3l + 2, l + 1 → λ = 3l + 1, l) = 2/7
for the only transition with I = 2, while, for I = 4 there are three types of transition with

B(E2 : 3l + 2, l → 3l + 1, l + 1) = 276l(l + 2)/385(6l + 3)(6l + 7)

B(E2 : 3l + 1, l + 1 → 3l, l) = 2(6l + 1)(6l + 7)/33(2l + 1)(6l + 5)

B(E2 : 3l, l → 3l − 1, l − 1) = 2(6l − 1)(6l + 5)/33(2l + 1)(6l + 1).

In the limit of large λ, the simple solutions (64) to (66) lead to the closed formulae

B(E2 : λ = 3l ± 1, EI → λ = 3l ± 2, EI ′) = (2I ′ + 1)

{∑
K

c
E1I
K c

E1I
′

K

(
2II ′

0K − K

)}2

B(E2 : λ = 3l, A1I → λ = 3l ± 1, EI ′) = 1

2
(2I ′ + 1)

{∑
K

c
A1I
K c

E1I
′

K

(
2II ′

0K − K

)}2

B(E2 : λ = 3l, A2I → λ = 3l ± 1, EI ′) = 1

2
(2I ′ + 1)

{∑
K

c
A2I
K c

E1I
′

K

(
2II ′

0K − K

)}2

which contain 3j-symbols on the right, together with the expansion coefficients cK
RI for the

Octahedral functions given in table 6 of appendix E for I � 8. It is soon verified that they
agree with the general results above when l → ∞.

It is also of interest to see how these very simple results for large l compare with the exact
results above for finite l. Table 1 shows the ratios of B(E2) values for some finite l to those at
l = ∞ for some I → I − 2 transitions within the n− = 0 and n− = 1 bands.
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Table 1. A comparison of some B(E2)-values between finite and infinite l.

n− I l = 0 1 2 3 4

0 2 2.00 1.33 1.20 1.14 1.11
0 4 2.40 1.64 1.41 1.30 1.24
0 6 2.60 1.86 1.58 1.44 1.36
1 4 – 2.10 1.57 1.38 1.29
1 6 – 2.36 1.79 1.55 1.43

7. Odd I

For most of this paper we have restricted the discussion to even values of I but results for odd
I are simply related to those for even I, as we now show. From equation (2) it is clear that
there is no solution for I = 1 and, as with the solutions for I = 0, the I = 3 solutions can be
found directly from the Casimir operator. They are found to be

Y3(l+1)3l = P 1
l+1(x)332 (71)

with λ = 3(l + 1) and l = 0, 1, 2, . . . , where again we have chosen the maximum M = 3.
The ladder operators can then be used, as before, to construct the other solutions. For

odd I, the pattern of solutions is therefore identical to figure 1 and may be superimposed onto
figure 1 with its origin positioned at λ = I = 3 instead of λ = I = 0. Moreover, the values of
the numbers n+ and n− introduced in section 2.3, are obtained by the replacements λ − 3 for λ

and I − 3 for I in the expressions given for even I. It follows that, for odd I, the range of values
for I and l is obtained by making these replacements in the previous formulae. In particular,
for given λ and l, the range of I is given by

2|λ − 3l − 3| + 3 � I � 2λ − 2l − 3

where I moves in steps of 4. This shows that for l = 0, there is a single odd solution for each
λ � 3 with I = 2λ − 3 analogous to the band of even solutions with I = 2λ. For the remainder
of this section we will reserve the symbol I for the odd solutions and, as an aid to clarity, use
the abbreviation IE = I − 3 for the corresponding even solutions.

To find detailed solutions for odd I, we make use of the operator

V = −1

3

(
a1

∂

∂a−2
+ a2

∂

∂a−1

)
∝ (a × ∇)3

3

which is a generator of the O(5) group. It follows immediately that V, acting on a solution
with even IE and M = IE, produces a solution of the same λ with I = IE + 3 and M = I. We
may therefore define the solution for any odd I � 3 by

YλIl = V YλIEl+1. (72)

This prescription is especially simple to apply in the φ+, φ0 basis of section 3, as Vφ+ = Vφ0 =
0. Moreover, from equations (9) and (10), Vβ = 0 and Vγ = −332 /3 so that, in the notation
of (18),

gλIl
b (x) = VgλI−3l+1

b (x) = sin 3γ
d

dx
gλI−3l+1

b (x)332. (73)

In other words, the solution for odd I in this basis is obtained by differentiating the coefficient
in the solution for the corresponding even IE = I − 3 and inserting a factor sin 3γ 332. This
is a simple operation because g is given as a power series (22). Equation (71) is a special case
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of this. It is worth noting that odd states defined by (72) also satisfy the triangular relation,
equation (15).

The application of equation (72) is different in the φ+, φ− basis of section 4 because V
does not give zero when acting on φ−. Instead,

V φ− = (cos 3γφ− − sin 3γφ+ e−iψ)332/sin 3γ. (74)

In analogy with equation (45) we again write the solutions in terms of Legendre functions,

YλIl =
n∑

b=0

[(n−b)/2]∑
r=0

ãλl(n, b, r)P b+2r+1
l+1 (x)φn−b

+ (eiψφ−)b332 (75)

where n = IE/2 and we describe two independent ways in which the coefficients ãλl(n, b, r)

may be related to previous results for the even solutions. Using (72) and (74), we find the
relation

ãλl(n, b, r) = aλl+1(n, b, r)

ρ(b, r)
− (b + 1)aλl+1(n, b + 1, r)

− (r + 1)(l + b + 2r + 3)(l − b − 2r)

(b + r + 2)
aλl+1(n, b, r + 1) (76)

where ρ(b, r) was defined just after equation (46). This gives the coefficients for given λ and
odd I as simple combinations of those of the corresponding even solution with the same λ.

Consider as an example the I = 7 top-band solutions with λ = 3l + 5. Using the entries
for I = 4, n− = 0 from table 2 in appendix C, replacing l by l + 1 and substituting into
equation (76) gives, for any l � 0

ã3l+5l (2, 0, 0) = 33(l + 3)(l + 4)/4, ã3l+5l (2, 1, 0) = −18(l + 4),

ã3l+5l (2, 2, 0) = 9, ã3l+5l (2, 0, 1) = −3/4.

Reflection symmetry again provides solutions when n− is replaced by n − n− but the symmetry
operation is now l → −(l + 3).

As an alternative to the use of (76) we have followed through the arguments of section
4, but with I odd rather than even. This shows that the ãλl(n, b, r) are again given by
equation (46), but with the following changes:

(i) Add 1 to b and l throughout and to (n − w) in the function A.
(ii) Include an extra factor (b + 1)/(n − w + 1).

8. Summary

We introduced simple ladder operators in section 2 which step from a solution λI to one with λ

± 1 I + 2. This enables the generation of the full array of solutions shown in figure 1, starting
from I = 0 for which the solutions are simply the Legendre polynomials Pl (x) with x =
cos 3γ . The array is thus divided into families labelled by l. Section 3 reproduced earlier
results [3] by a more direct method, by first deriving and solving a simple recurrence relation
for a sub-set of solutions, the ‘top band’ with λ = 3l + I/2, and then using a triangular relation,
derived in section 2.4, to get the general solution.

Section 4 introduced a new basis for the Euler angle dependence of the solution leading
to an alternative form for the solutions involving relatively few associated Legendre functions
Pl

m (x) rather than power series as in [3]. (Although Gheorghe [9] expressed the solutions
as a series of Gegenbauer polynomials, which are closely related to the Legendre functions,
his solutions differ from ours in two important respects; he uses the basis of section 3 rather
than that of section 4 and also his sums run over many l-values while, here, each solution
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has a unique value of l.) A new reflection symmetry was noted in section 4.2, whereby one
solution may be obtained directly from another. In section 4.4, the solutions were expressed in
terms of representations of the underlying Octahedral symmetry group of the five-dimensional
coordinates. We briefly investigated the introduction of a ‘spin’ defined by s = I/4 and,
although, for I = 2, this led to solutions given precisely by the standard vector-coupling
	l + 	s = 	j , this simplicity is lost for higher I. The label j may still be used but the coupling
coefficients are no longer standard. However, in section 5 we used the spin concept to derive
simple closed expressions for the solutions in the limit λ → ∞ with I finite. The solutions
fell into several classes, depending on whether λ is a multiple of 3 or a multiple of 3 plus or
minus 1. The Euler- angle dependence is given, in each case, by a single Octahedral group
representation.

Some B(E2) values are calculated in section 6, which includes a comparison with the
results at large λ, for which closed formulae are given. Although most of the paper is
concerned with even I, it has been known for a long time that the extension to odd-I is
straightforward and this is described briefly in section 7.

Appendix A. A restriction to the array of solutions

Here we justify the remark in section 2.3 that, in the procedure for constructing the array of
solutions with given l, the lowering operator Q− must not be applied more than l times. To
do this we show that the (l + 1)th application of Q− on the starting function Pl (x) at I = 0
produces a solution lying in the vector space spanned by a set of solutions with smaller l. It is
thus not independent of those solutions and should be discarded.

The solution obtained by (l + 1) applications of the operator Q− has λ = 2l − 1, I =
2(l + 1) and is given by (17), (18), and (22) where formula (27) for the coefficient simplifies to

c
2l−12(l+1)l
bα = (−1)α+b3b(2l − 2α)!

2b−1
α!(l − α)!(l − b − 2α)!

∑
i

(−1)i(i + 3α)!

i!(b − i)!(i + 3α − l − 1)!

= (−1)α3b(2l − 2α)!(3α)!

2b−1α!b!(l + 1 − b)!(l − α)!(b + 3α − l − 1)!(l − b − 2α)!
.

Because of the factorials in the denominator, these coefficients vanish except for integer values
of α which satisfy the inequalities

2α � (l − b) � 3α − 1

and it is seen that this excludes α = 0 and also b = l and l − 1 so that no term of higher power
than xl−2 can occur. But the vector space defined by these limits is spanned by the solutions
for smaller l-values (l − 2), (l − 4), . . . . Hence the solution obtained above, by the (l + 1)th
application of Q−, is simply a linear combination of solutions for smaller l.

Appendix B. The proof of a conjecture

What follows is an outline of the proof that (44) is a solution of (43). Consider first the terms on
the right-hand side of (43) which involve Bi+1

(
n, b′, r ′) . After substitution of (44) these may

be collected over a common denominator t!(n− b − i − 2r − 2t)!(b + 2r + t)!(t + r − i − 1)!
which is just that appropriate to Bi+1(n + 1, b, r). This process is facilitated by making the
transformation t → t − 1 in the two terms having b′ + 2r ′ = b + 2r + 1, in this way absorbing
the factor −1/12 into the summation. The sum of these five terms is then found to be

{1 − 3(i + 1)/(n + 1)}(b + 2r)Bi+1(n + 1, b, r).
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Table 2. The coefficients (46) in the Legendre expansion of the solutions.

I n− b r = 0 0 0 1 0 2 1 0

0 0 1 – – –
2 0 −3(l + 1) – – 3

4 0 15(l + 1)(l + 2)/2 −3/2 – −18(l + 2)

1 −21l(l + 1)/2 −3/2 – −21

6 0 −3(l + 1)(l + 2)(9l + 35)/2 3(9l + 19)/2 – 297(l + 2)(l + 3)/4

1 63l(l + 1)(l + 2)/2 9(l + 4)/2 – −9(l + 2)(15l − 43)/4

8 0 9(l + 1)(l + 2)(l + 3)(3l + 140)/8 −9(l + 3)(17l + 36)/2 9/8 −9(l + 2)(l + 3)(27l + 116)

1 −9l(l + 1)(l + 2)(69l + 239)/8 9(l2 − 22l − 51)/2 9/8 9(l + 2)(l + 3)(90l − 167)/4

2 891(l − 1)l(l + 1)(l + 2)/8 9{7l(l + 1) − 31}/2 9/8 1287{l(l + 1) − 2}/2

I n− b r = 1 1 2 0 2 1 3 0 4 0
0 0 – – – – –
2 0 – – – – –
4 0 – 9 – – –

1 – 9 – – –
6 0 −27/4 −81(l + 3) – 27 –

1 −27/4 −9(3l + 20) – 27 –

8 0 9(9l + 28) 459(l + 3)(l + 4) −27 −324(l + 4) 81

1 9(18l + 85)/4 −27(l + 3)(l − 41) −27 −81(2l + 13) 81

2 315/2 9{−21l(l + 1) + 269} −27 −918 81

The sum of the remaining terms, involving the Bi

(
n, b′, r ′), can be separated into a part

proportional to b + 2r and one proportional to 2r. The latter proves to be proportional to
b + 2r also and the sum of all these terms is found, after some algebra, to be

3(i + 1)(b + 2r)Bi+1(n + 1, b, r)/(n + 1).

Together with the previous result, this verifies that (44) is a solution of (43).

Appendix C. The solutions for even I � 8

Although formula (46) for the coefficients al (n, b, r) in the general solution involves several
summations, the sums are quite simple for small I and the results are listed in table 2 for
I � 8. They are given as functions of l for each I and n− = 1/2 (3l − λ) + I/4, which
fixes λ. The table is restricted to n− � I/4 since, as explained in section 4.2, results for
n′

− = I/2 − n− are obtained from those for n− by the replacement of l by −(l + 1). Note that
the coefficients for the cases n− = I/4 depend on l only through l(l + 1) which is invariant
under this reflection.

Appendix D. The norms and overlaps for I � 8

In section 4.3 we described the direct method for calculating the norms of solutions (45)
although for small I there are various short cuts. For reference we give the norms and overlaps in
tables 3 and 4. As explained before, we use the volume element dV = sin 3γ dγ sin θ dθ dϕ dψ

and the tables give the values of the norms and overlaps multiplied by (2I + 1)/8π2. It is
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Table 3. Some norms.

I n− 〈n− lI | n− lI 〉 (2I + 1)/8π2

0 0 2/3(2l + 1)

2 0 6(l + 1)

4 0 54(l + 1)(l + 2)(6l + 5)/7

1 9l(l + 1)(6l + 1)(6l + 5)/5(2l + 1)

6 0 6(l + 1)(l + 2)(6l + 5)(6l + 7)(1098l2 + 4941l + 5005)/385(2l + 3)

1 54l(l + 1)(l + 2)(6l + 1)(6l + 7)/11

8 0 54(l + 1)(l + 2)(l + 3)(6l + 5)(6l + 7)(4986l2 + 27423l + 30940)/5005

1 27l(l + 1)(l + 2)(6l + 1)(6l + 5)(9846l2 + 44307l + 45331)/10010

2 81(l − 1)l(l + 1)(l + 2)(6l − 1)(6l + 1)(6l + 5)(6l + 7)/65(2l + 1)

Table 4. Some overlaps.

I n− 〈n− + 3 l + 2 I | n− lI 〉 (2I + 1)/8π2

6 0 48(l + 1)(l + 2)(6l + 5)(6l + 7)(6l + 11)(6l + 13)/385(2l + 3)

8 0 1728(l + 1)(l + 2)(l + 3)(6l + 5)(6l + 7)(6l + 13)(6l + 17)/5005

Table 5. The allowed Octahedral representations for each I, excluding those with dimension 3.

I 0 2 4 6 8 10 12

Octahedral A1 E A1 + E A1 + A2 + E A1 + 2E A1 + A2 + 2E 2A1 + A2 + 2E
representation

convenient to use the label n−, see section 2.3, rather than λ, with λ = 3l + I/2 − 2n−. The
results are valid for both forms (27) and (46) of the solutions.

Norms for the higher values of n−, given by replacing the value in the table by (I/2 − n−),
are obtained from those in the table by the substitution l → −(l + 1), see section 4.2, with an
overall change of sign. The overlap for I = 8, n− = 1 is obtained from that in the table by the
substitution l → −(l + 3) with an overall sign change while the I = 6 entry is invariant under
this operation.

Appendix E. The orthonormal Octahedral basis

From the known character tables for the Octahedral group, the reduction of the (2I + 1)-
dimensional representation of the rotation group into irreducible representations of the
Octahedral group is given in table 5 for I � 12.

The three-dimensional Octahedral representations are omitted from this table since it is
impossible to construct an overall invariant from them with the remaining variable γ . The
total dimension in the table, for each I, is (1/2I + 1) which is equal to the number of non-
negative values of K. Generally, the number of times that each representation occurs is given by
n(E) = [(I + 4)/6], where [x] again denotes the integer part of x, together with the known total
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Table 6. The coefficients for the expansion of each Octahedral representation into IIK .

A1 and E1 A2 and E2

I Representation K = 0 4 8 2 6

0 A 1 – – – –
2 E 1 – – 1 –
4 A (

√
7

√
5)/2

√
3 – – –

E (
√

5 −√
7)/2

√
3 – −1 –

6 A (1 −√
7)/2

√
2 – (

√
11 −√

5)/4
E (

√
7 1)/2

√
2 – (

√
5

√
11)/4

8 A (3
√

11 2
√

7
√

65)/8
√

3 – –
E (−3

√
35 −2

√
55

√
1001)/16

√
6 1 –

E′ (−√
143 2

√
91

√
5)/16

√
2 – 1

Table 7. The expansion of the vectors |y±〉 in the orthonormal Octahedral basis of table 6.

I y A1 A2 E1 E2 E′
1 E′

2

2 0+ – –
√

2 – – –
0− – – –

√
2 – –

4 0+ – –
√

(6/7) – – –
1+ √

(3/10) – – – – –
0− – – – −√

(6/7) – –
6 0+ 3

√
(2/77) – – – – –

1+ – –
√

(2/11) – – –
0− –

√
(2/5) – – – –

1− – – –
√

(2/11) – –
8 0+ – – 9

√
3/2

√
1001 – −1/2

√
5 –

1+ – – −15
√

3/4
√

1001 – −1/4
√

5 –
2+ √

(3/130) – – – – –
0− – – – 9

√
3/2

√
1001 – −1/2

√
5

1− – – – 15
√

3/4
√

1001 – 1/4
√

5

dimension and n(A1) − n(A2) = (1 + (−1)I/2)/2. It is convenient to express these Octahedral
functions in terms of the more familiar D-functions

|αRIM〉 =
√

2I + 1

8π2

∑
K�0

cαRI
K IMK

where the IMK where defined in equation (2). With the help of the Octahedral group operators,
we find the coefficients given in table 6.

Since A1 and the first component E1 of the E representation contain only K = 0, 4, 8, etc
while A2 and the second component E2 contain only K = 2, 6, etc their coefficients are given
on the left- and right-hand sides of the table respectively. The two E-representations for I = 8
have been distinguished, arbitrarily, by putting a zero for the K = 6 component in E and
making E′ orthogonal to E. To express our solutions (45) in this Octahedral basis we need to
use expansion (58) of the basis |b〉. For I � 8, this involves only small values of y � 2 and, for
such values, the coefficients G(n, b, y) in (58) are simple, G(n, b, 0) = 1, G(n, b, 1) = (n − 2b),
G(n, b, 2) = 1/2{(n − 2b)2 − n}. The expression of the |y±), defined just after equation (58),
in terms of the orthonormalized Octahedral basis of table 6 is given in table 7.
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